THE JOURNAL OF ANTIBIOTICS

VICENISTATIN, A NOVEL 20-MEMBERED MACROCYCLIC LACTAM ANTITUMOR ANTIBIOTIC

Kazutoshi Shindo, Masaru Kamishohara, Atsuo Odagawa, Michiko Matsuoka and Hiroyuki Kawai

Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Miyahara, Takasaki, Gunma 370-12, Japan

(Received for publication December 9, 1992)

A new antitumor antibiotic vicenistatin was isolated from the culture broth of *Streptomyces* sp. HC34. The structure of vicenistatin was elucidated by NMR spectral analysis. Vicenistatin exhibited antitumor activity against human colon carcinoma Co-3 in the xenograft model.

In the couse of screening for new antitumor antibiotics, *Streptomyces* sp. HC34 was found to produce a novel antitumor antibiotic vicenistatin. Vicenistatin was recovered from the mycelium cake with acetone extraction and purified by chromatography. Structural studies revealed it to possess a novel 20-membered macrocyclic lactam ring and a novel amino sugar.

Vicenistatin showed growth inhibition against various tumor cells *in vitro*, and also showed antitumor activity against human colon carcinoma Co-3 in the xenograft model.

In this paper, we describe the production, isolation, structural elucidation and biological properties of vicenistatin.

Taxonomy of the Producing Strain

Culture HC34 was isolated from a soil sample collected at Kiryu, Gunma Prefecture, Japan. Characterization of the strain was carried out mainly by the methods described by SHIRLING and GOTTLIEB¹.

The aerial mycelium of the strain monopodially branched on the long main stem and terminated in spirals forming spore chains with $10 \sim 50$ spores per chain. The spores were cylindrical or oval $(0.5 \sim 0.7 \times 0.7 \sim 1.6 \,\mu\text{m})$ with smooth surfaces. The cultural and physiological properties of strain HC34 grown on various media at 27°C are shown in Tables 1 and 2, respectively. The whole-cell hydrolysate contained the L,L isomer of diaminopimelic acid which corresponds to cell-wall type 1. Based on these morphological and chemotaxonomic characteristics,

it was concluded that the strain belongs to the genus *Streptomyces*.

Fermentation

A well grown agar slant of *Streptomyces* sp. HC34 was used to inoculate a 500-ml Erlenmeyer flask containing 100 ml of fermentation medium consisting of potato starch 3%, soya flake 1.5%, yeast extract 0.2%, corn steep liquor 0.5%, NaCl 0.3%, MgSO₄·7H₂O 0.05%, CoCl₂·6H₂O 0.0005% and CaCO₃ 0.3%, the pH being adjusted

Fig. 1. The total structure of vicenistatin.

Sucrose-nitrate agar	G:	Moderate	Tyrosine agar	G:	Poor
	R:	Greenish white		R:	Dark yellowish brown
	Am:	Moderate; bluish white		Am:	Poor; dark yellowish gray
	Sp:	None		Sp:	Pale red
Glucose - asparagine	G:	Good	Nutrient agar	G:	Moderate
agar	R:	Grayish yellow green		R:	Yellowish white
	Am:	Good; grayish		Am:	Poor; yellowish white
	Sp:	None		Sp:	None
Glycerol - asparagine	G:	Poor	Yeast extract - malt	G:	Good
agar	R:	Pinkish white	extract agar	R:	Dark red
	Am:	Poor; pinkish white		Am:	Good; light greenish gray
	Sp:	None		Sp:	Pale red
Inorganic salts - starch	G:	Good	Oatmeal agar	G:	Good
agar	R:	Dull red purple		R:	Red purple
	Am:	Good; light olive gray		Am:	Good; light greenish gray
	Sp:	Pale red		Sp:	Pale red

Table 1. Cultural characteristics of strain HC34

G: growth, R: reverse side of colony, Am: aerial mycelium, Sp: soluble pigment.

rucie 2. injoiological properties of strain free	Table	2.	Physiological	properties	of	strain	HC34
--	-------	----	---------------	------------	----	--------	------

Temperature for growth $8 \sim 30^{\circ} C$		Appearance	Colorless powder	
Production of melanoid pigments:		MP	$151 \sim 153^{\circ}C$ (dec)	
Tyrosine agar Negative		$\left[\alpha\right]_{\rm D}^{22}$	-3° (c 0.1, MeOH)	
Peptone - yeast extract - iron agar Negative		Molecular formula	$C_{30}H_{48}O_4N_2$	
Tryptone - yeast extract agar	Negative	HRFAB-MS Calcd:	501.3692	
Hydrolysis of starch Negative		Found:	501.3697 (M+H) ⁺	
Liquefaction of gelatin Negative		UV $\lambda_{max}(\varepsilon)$	235 (35,000), 240 (35,800),	
Peptonization of milk Negative		(in MeOH)	268 (13,700)	
Coagulation of milk Negative		IR v (KBr) cm ⁻¹	3400, 3300, 2920, 1655, 1625,	
Utilization of carbon source:			1540, 990	
Utilized L-arabinose, D-xylose, D-gh	ucose,			
D-fructose, sucrose, inosito D-mannitol, galactose, D-m maltose	l, raffinose, annose,	to 7.1 before steriliz carried out at 27°C f	ation. The fermentation wa for 3 days with shaking on a	
Not utilized L-rhamnose, sorbitol		rotary shaker A 600 ml portion of the culture wa		

LS a rotary shaker. A 600 ml portion of the culture was inoculated into 50-liter jar fermenter containing 30

Table 3. Physico-chemical properties of vicenistatin.

liters of a production medium having the same composition as the flask fermentation medium. The fermentation was run at 27°C for 5 days with agitation at 400 rpm and aeration rate of 30 liters per minute.

Isolation and Purification

The fermentation broth (60 liters) was centrifuged to give a mycelium cake. The mycelium cake was extracted with acetone (20 liters). The extract was filtered and concentrated in vacuo to an aqueous solution. The solution was extracted twice with 5 liters of ethyl acetate at pH 10. After evaporation, the residue was applied to a silica gel column (Wakogel, C-200, 12×30 cm) which was developed with chloroform - methanol (10:1). The active eluate was concentrated to dryness and then subjected to Sephadex LH-20 chromatography $(3.5 \times 50 \text{ cm})$ with chloroform-methanol (1:1). The active fractions were concentrated to dryness to give a colorless powder of vicenistatin (950 mg).

Structural Elucidation

The physico-chemical properties of vicenistatin (1) were summarized in Table 3. The molecular formula

Fig. 2. 500 MHz ¹H NMR spectrum of vicenistatin in pyridine- d_5 .

Table 4. 125 MHz ¹³C NMR and 500 MHz ¹H NMR spectral data of vicenistatin^a.

Position	δ_{C}	$\delta_{ m H}$	Position	$\delta_{ m C}$	$\delta_{ m H}$
1	166.4 s		17	33.0 t	1.48°, 1.57°
2	124.7 d	6.26 (d, 15.0 ^b)	18	33.6 d	1.86°
3	140.2 d	7.59 (dd, 11.5, 15.0)	19	43.5 t	3.03 (ddd, 3.0, 5.0, 13.5),
4	128.4 d	6.20 (dd, 11.5, 15.5)			4.00 (m)
5	143.2 d	5.86 (dd, 10.0, 15.5)	19-NH		8.47 (br d, 6.2)
6	46.1 d	2.40°	20	18.7 q	1.08 (d, 6.5)
7	85.9 d	3.36 (ddd, 2.8, 9.0, 9.0)	21	18.0 q	1.68 (s)
8	36.5 t	2.27°, 3.08 (ddd, 2.8, 7.5, 9.0)	22	17.3 q	1.94 (s)
9	122.3 d	5.20 (dd, 7.5, 7.5)	23	17.8 q	0.84 (d, 6.5)
10	134.8 s		1'	100.7 d	5.29 (dd, 3.0, 9.5)
11	49.5 t	2.62 (d, 15.0), 2.74 (d, 15.0)	2'	39.5 t	1.90 (ddd, 2.8, 9.5, 14.5), 2.43°
12	134.1 s		3'	63.4 d	4.39 (ddd, 2.8, 3.0, 4.2)
13	127.9 d	5.95 (d, 11.5)	4′	65.3 d	2.24 (dd, 3.0, 9.8)
14	128.4 d	6.79 (dd, 11.5, 15.0)	5'	71.5 d	4.02 (dq, 6.5, 9.8)
15	132.6 d	5.68 (ddd, 5.8, 6.0, 15.0)	6'	19.6 q	1.52 (d, 6.5)
16	27.9 t	2.07 (m), 2.39°	7′	34.0 q	2.42 (s)

Taken in pyridin- d_5 .

^b Coupling constants in J = Hz.

[°] Resonance in one-dimentional spectra obscured by overlapping signals.

of 1 was established as $C_{30}H_{48}O_4N_2$ on the basis of HRFAB-MS data. In the IR spectrum, 1 showed strong bands at 3400 (OH and/or NH) and 1655 cm⁻¹ (amide). The ¹H NMR spectrum taken in pyridine- d_5 (Fig. 2) revealed the presence of six methyl resonances (δ 0.84, 1.08 and 1.52, 1.68, 1.94 and 2.42), eight olefinic methine protons (δ 5.20, 5.68, 5.86, 5.95, 6.20, 6.26, 6.79 and 7.59) and one amide proton (δ 8.47, br d) in addition to 19 other methylene or methine protons at around δ 1.4~5.3. The ¹³C NMR spectrum demonstrated 30 signals which were assigned to six methyls, six methylenes, fifteen methines and three quaternary carbons by DEPT experiment. The ¹H and ¹³C NMR spectral data for 1 are summarized in Table 4.

Detailed analysis of the ¹H-¹H COSY and the decoupling experiments proved the partial structures A, B and C as shown in Fig. 3. And the remaining carbons of 1 were two singlet methyls (C-21, δ 18.0 and C-22, δ 17.3), one NCH₃ (C-7', δ 34.0), one isolated methylene (C-11, δ 49.5) and one amide carbonyl carbon (C-1, δ 166.4). Further structural elucidation was performed by the observations of the long range

Fig. 3. Partial structures of vicenistatin.

 ${}^{1}\text{H}{-}{}^{13}\text{C}$ connectivities which were detected by heteronuclear multiple-bond correlation (HMBC)²) experiment and NOE effects.

The HMBC experiment on 1 showed the long range couplings of 21-CH₃ to C-9 (δ 122.3), C-10 (δ 134.8) and C-11 (isolated methylene) and 22-CH₃ to C-11, C-12 (δ 134.1) and C-13 (δ 127.9). Furthermore, the HMBC experiment also showed the long range couplings of 2-H (CH) and 19-H (CH₂) to C-1 (amide carbonyl carbon). These correlations confirmed the linkages of the partial structures A and B through C-11 and C-1, respectively. And the presence of 20-membered macrocyclic lactam moiety in 1 was established (Fig. 4).

In the partial structure C, NOE was observed between 1'-H and 5'-H (Fig. 4). Therefore, the partial structure C was confirmed to constitute a hexopyranose. And the long range coupling of 1'-H (anomeric proton) to C-7 (δ 85.9) in the HMBC experiment showed the linkage of this hexopyranose to the macrocyclic lactam ring at C-7. A NCH₃ group located at C-4' (δ 65.3) was also proved by the observation of long range coupling in the HMBC experiment (Fig. 4). The relative stereochemistry for Fig. 4. ¹H-¹³C long range couplings and NOEs.

Table 5. Physico-chemical properties of **2** (methyl β -D-vicenisaminide)^a.

	$\delta_{ m C}$	$\delta_{\rm H}$ in CD ₃ OD
1	100.4	4.75 (dd, 2.5, 9.5) ^b
2	38.8	1.67 (ddd, 2.8, 9.5, 14.5),
		2.03 (ddd, 2.5, 4.2, 14.5)
3	62.4	4.35 (ddd, 2.8, 3.0, 4.2)
4	63.3	2.91 (dd, 2.8, 9.0)
5	68.0	4.01 (dq, 6.5, 9.0)
6	18.7	1.36 (d, 6.5)
$4-NCH_3$	31.3	2.74 (s)
1-OCH ₃	56.7	3.44 (s)

^a MP 183~185°C (dec), MW 175 [FD-MS, m/z 175 (M^+)], $[\alpha]_D^{24}(c 0.4, H_2O) - 47^\circ$, $[\alpha]_{435}^{44}(c 0.04, H_2O) - 5^\circ$, $[\alpha]_{435}^{44}(c 0.04, \text{tetraamminecopper (II) sulfate)} - 503.5°, <math>\Delta$ [M]_{TACu} - 872°.

^b Multiplicity and coupling constant (Hz) are in parentheses.

this amino sugar was determined by the coupling constants. Large coupling constants of $J_{1',2'ax} =$ 9.5 Hz and $J_{4',5'} = 9.8$ Hz indicated that 1'-H, 4'-H and 5'-H were axially oriented. 3'-H was determined to be the equatorial orientation because of its small coupling constants ($J_{2'ax,3'} = 2.8$ Hz, $J_{2'eq,3'} = 4.2$ Hz and $J_{3',4'} = 3.0$ Hz). Methanolysis of 1 yielded a methyl β -glycoside (2). The absolute configuration of 2 was determined by TACu method³). The negative contribution (Δ [M]_{435(TACu)} -872°) of 2 suggested that this sugar belonged to the D-series (Table 5). Therefore, the structure of this amino sugar was established to be 4-methylamino-2,4,6-trideoxy- β -D-ribohexopyranose. As far as we know, this amino sugar was found for the first time and the name vicenisamine was given. From all these findings, the total structure of 1

was deduced as shown in Fig. 1.

The geometries of C-2, C-4 and C-14 were proved to be all *E* by the coupling constants of $J_{2,3} = 15.0$ Hz, $J_{4,5} = 15.5$ Hz and $J_{14,15} = 15.0$ Hz, respectively. Upfield chemical shifts of C-21 (δ 18.0) and C-22 (δ 17.3) and no NOEs between 9-H and 21-H, and 13-H and 22-H showed *E* configurations for C-10 and C-12. The *cis* relation between 20-CH₃ and 7-H was established based on NOE networks as shown in Fig. 4 and a large coupling constant ($J_{6,7} = 9.0$ Hz), but the stereochemistry at C-18 remains to be determined.

Some other macrocyclic lactam antibiotics are known such as hitachimycin⁴, fluvirucins⁵ and

Table 6. Antitumor activity of vicenistatin against Co-3 human colon carcinoma.

Compound	Dose (mg/kg/day)	Treatment schedule	TGIR (%) ^a
Vecenistatin	8	Day 1~5	65
	2	Day 1~5	52
Mitomycin C	6.7	Day 1	67

Tumor fragment of Co-3 was implanted sc into $6 \sim 8$ -week-old female nude mice (BALB/c nu/nu Slc) and when tumor size reached $100 \sim 300 \text{ mm}^3$, vicenistatin or mitomycin was given iv. From the start of the treatment, tumor growth inhibition rate (TGIR) of each compound was calculated for 3 weeks as follows; TGIR= $(1 - \text{mean tumor volume of treatment group}) \times 100$.

^a Maximum TGIR value through 3 weeks.

BE-14106⁶⁾. Especially, BE-14106 also possess a 20-membered macrocyclic lactam ring. However, 1 is different from BE-14106 in the point that 1 contains a novel amino sugar (vicenisamine).

Biological Activity

1 was tested for its *in vitro* cytotoxicity. IC_{50} (µg/ml) values against HL-60 (human leukemia) and COLO205 (human colon carcinoma) were 0.12 and 0.19, respectively. Additionally, the antitumor activity of 1 was determined in Co-3 (human colon carcinoma) implanted nude mice⁷⁾. The results are shown in Table 6. 1 exhibited antitumor activity against Co-3. The unique structural feature of 1 makes it an interesting lead compound for antitumor agents. Further biological studies are in progress.

Experimental

General

Specific rotation was obtained on a Jasco DIP-140 spectropolarimeter. Mass spectra were measured on a JEOL JMS-SX102A in the FAB mode using glycerol matrix. UV and IR spectra were recorded on a Hitachi U-3200 spectrophotometer and a Jasco A-3 spectrophotometer, respectively. NMR spectra were obtained on a JEOL JNM-GX500 spectrophotometer with ¹H NMR at 500 MHz and ¹³C NMR at 125 MHz. Chemical shifts are given in ppm using TMS as internal standard.

Methanolysis of 1

A solution of 50 mg of 1 in 10 ml of 5% HCl-MeOH was boiled under reflux for 40 minutes. The solution was concentrated, and the residue was chromatographed on a silica gel using chroloform - methanol (5:1). The eluate was concentrated to yield 9.2 mg of methyl β -D-vicenisaminide (2). Physico-chemical properties of 2: see Table 5.

References

- SHIRLING, E. B. & D. GOTTLIEB: Methods for characterization of *Streptomyces* species. Int. J. Syst. Bacteriol. 16: 313~340, 1966
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986
- UMEZAWA, S.; T. TSUCHIYA & K. TATSUTA: Studies of aminosugars. XI. Configurational studies of aminosugar glycosides and aminocyclitols by a copper complex method. Bull. Chem. Soc. Jpn. 39: 1235~1243, 1966

VOL. 46 NO. 7

- 4) OMURA, S.; A. NAKAGAWA, K. SHIBATA & H. SANO: The structure of hitachimycin, a novel macrocyclic lactam involving β -phenylalanine. Tetrahedron Lett. 23: 4713~4716, 1982
- 5) NARUSE, N.; T. TSUNO, Y. SAWADA, M. KONISHI & T. OKI: Fluvirucins A₁, A₂, B₁, B₂, B₃, B₄ and B₅, new antibiotics active against influenza A virus. II. Structure determination. J. Antibiotics 44: 741~755, 1991
- 6) KOJIRI, K.; S. NAKAJIMA, H. SUZUKI, H. KONDO & H. SUDA: A new macrocyclic lactam antibiotics, BE-14106. I. Taxonomy, isolation, biological activity and structural elucidation. J. Antibiotics 45: 868~874, 1992
- 7) INABA, M.; T. TASHIRO, T. KOBAYASHI, S. FUJIMOTO, Y. SAKURAI, K. MARUO, Y. OHNISHI, Y. UEYAMA & T. NOMURA: Evaluation of response rates to various antitumor agents of human gastric tumors implanted in nude mouse. Jpn. J. Cancer Res. (Gann) 77: 190~196, 1986